

ELSEVIER Thermochimica Acta 282/283 (1995) 297-304

thermochimica acta

Ternary chlorides in the systems CsCl/ErCl₃ and $RbCl/ErCl₃¹$

Dorothea Büchel^a, Jozef Krok-Kowalski^b, Hans-Joachim Seifert^{a,*}

^a Inorganic Chemistry, FB 19: University of Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany ^b Institute of Physics, University of Silesia, Katowice, Poland

Abstract

The phase diagram of the system $RbCl/ETCl₃$ was investigated by means of DTA and the system CsCl/ErCl, was re-investigated. The existence of the caesium compounds $Cs₃ErCl₆$ (dimorphic), Cs_2ErCl_5 , $Cs_3Er_2Cl_7$ and $CsEr_2Cl_7$ was confirmed. In the system RbCl/ErCl₃, there are two dimorphic, congruently melting compounds, Rb_3ErCl_6 and $RbEr_2Cl_7$. The incongruently melting compound $Rb_2EICl_5(Cs_2DyCl_5$ structure) is stable at temperatures higher than 348°C. The thermodynamic stabilities of the compounds were determined by solution calorimetry and e.m.f. measurements in a galvanic chlorine cell for solid electrolytes.

Keywords: Alkali metal chloride/erbium chloride systems; Phase diagrams; Ternary erbium chlorides; Thermodynamics

1. Introduction

Our systematic investigations on the stability of ternary lanthanide chlorides have revealed that in the systems $RbCl/LnCl_3$, with Ln being La-Gd[1], compounds Rb_2LnCl_5 exist, crystallizing with K_2PrCl_5 structure [2] (Y₂HfS₅-type [3]), in which the coordination number (CN) of the Ln^{3+} against the chloride ions is 7; in the systems $RbCl/TbCl₃$ [4] and $RbCl/DyCl₃$ [5], analogous compounds do not exist. Compounds Cs , LnCl_s with this structure were found in the systems from Ln = La–Nd,

^{*}Corresponding author.

^{&#}x27; Dedicated to Takeo Ozawa on the Occasion of his 65th Birthday.

^{0040-6031/96/\$15.00 © 1996 -} Elsevier Science B.V. All rights reserved *SSDI* 0040.6031(95)02811-O

while, beginning with $Cs_2SmCl_5[6]$, the 2:1 compounds have the Cs_2DyCl_5 structure with an octahedral coordination for samarium. It was now of great interest to determine with lanthanides smaller than Dy, whether compounds Rb_2LnCl_5 exist crystallizing with the $Cs₂DyCl₅$ structure. Therefore, we have investigated the hitherto unknown system $RbCl/ErCl₃$ and have also reinvestigated the CsCl/ErCl₃ system. In the $KCl/ErCl₃$ system, unsolved difficulties still exist concerning the polymorphy of K_3EICl_6 ; we will publish this system and the $KCl/HoCl_3$ system later on.

2. **Experimental**

The starting compounds were ErCl₃ 6H₂O, prepared by dissolving Er₂O₃ (99.9%, Fa. Heraeus, Hanau) in hydrochloric acid, and the alkali metal chlorides CsCl and RbCl (Fa. E. Merck, Darmstadt; quality p.A.). They were dried at 500°C.

The equipment for the thermochemical and structural investigations has been described earlier.

(i) DTA [7]. A homemade device was used with samples either in vacuum-sealed quartz ampoules, or in open corundum crucibles, when rich in E_rCl_3 .

(ii) XRD. A Philips X-ray goniometer PW 1050/25 was used for crystal powders in He atmosphere; dynamic high-temperature photos by the Simon-Guinier method.

(iii) Solution calorimetry [S]. A homemade isoperibolic calorimeter for samples of 2-4 g, dissolved in 1.1 liter 0.01 M hydrochloric acid.

(iv) E.m.f. measurements [9]. For the formation of the most $E₁$ -rich compounds, the set-up of the cell was: (graphite + Cl_2)/ACl/A⁺-conduct diaphragm/ErCl₃ $(+ \text{AEr}_{2}Cl_{7})$ /(graphite + Cl₂). The collected e.m.f. vs. T values were subjected to a linear regression analysis.

3. **Results**

3.1. *Preparation ofanhydrous compounds*

For the preparation of anhydrous ErCl, the hexahydrate was first dehydrated to ErCl₃ H₂O by heating in a vacuum furnace from 80 to 100°C. Then the last water was removed by heating the monohydrate slowly from 120 to 250°C in an HCl stream. The product was soluble in water or methanol. Its structure was composed of strongly distorted layers; the AlCl,-type structure was formed after melting.

The anhydrous compounds Cs_3ErCl_6 and Rb_3ErCl_6 , both with the Cs_3BiCl_6 structure, can be prepared from a solution of $ErCl_3.6H_2O$ and Cs_2CO_3 in concentrated acetic acid by precipitation with HCl gas. We have recently described this method for ternary chlorides of trivalent iron, chromium and vanadium [10].

For Rb_3ErCl_6 , 3.8 g of $ErCl_3$. $6H_2O$ were dissolved at 80°C in 30 ml acetic acid. A solution of 3.4 g Rb_2CO_3 in 20 ml H₃C.COOH was added. When saturating the solution with HCl gas, a pink precipitate was formed. This was filtered and washed with ether under exclusion of moisture: yield, 5.6 g Rb_3ErCl_6 (85%).

3.2. *Phase diagrams and crystal structures*

Fig. 1 illustrates the results of the DTA measurements on the systems $RbCl/ErCl₃$ and CsCl/ErCl,.

The melting temperature of E_rCl_3 found by measurements in a corundum crucible was 751° C; this differs distinctly from the data given in the literature, namely 764 \degree C by Korshunov et al. [11], 791 \degree C by Goryuskin et al. [12], and 776 \degree C by Dworkin and Bredig [131. In 1994 Gaune-Escard et al. [141 found by measurements of 300 mg samples in quartz cells, that $E₁$ should have a melting point of 773[°]C and a phase transition at 752°C. In our own experiments, this double effect originated in a reaction of the ErCl₃ melt with $SiO₂$. As Fig. 2 demonstrates, we found for the first melting only one peak at 751°C. When repeating the melting process, the effect splits; the splitting becomes more pronounced the more melting cycles are run. (The reaction of ScCl₃ and SiO₂ with the formation of Sc₂Si₂O₇ is described by Polyachenok et al. [15].)

In the system $RbCl/ErCl_3$, two dimorphic compounds exist: Rb_3ErCl_6 and $RbEr_2Cl_7$. A third, incongruently melting compound, Rb_2ErCl_5 , is stable from 348 to 520 $^{\circ}$ C. However, the formation temperature of 348 $^{\circ}$ C could be observed only in heating curves with samples of quenched melts. When cooling, the

Fig. 1. The systems CsCI/ErCl, and RbCI/ErCI,

Fig. 2. Melting cycles for $EICI₃$ in quartz ampoules.

decomposition does not occur in the time scale of DTA. X-ray measurements of samples cooled to ambient temperature reveal only a partial decomposition after some days.

The results of Blachnik and Selle [16] concerning the system $CsCl/ErCl₃$ were confirmed. In particular, we corroborate that two incongruently melting compounds exist: Cs_2ErCl_5 (peritectic temp., 650°C) and $Cs_3Er_2Cl_9$ (peritectic temp., 602°C).

The unit cells of all low-temperature compounds were determined by Meyer and coworkers from powder patterns: L-Cs₃ErCl₆ and L-Rb₃ErCl₆ [17], Cs₃BiCl₆-type (S.G. C 2/c); Cs_2ErCl_5 and Rb_2ErCl_5 [18], Cs_2DyCl_5 -type (S.G. Pbnm); $Cs_3Er_2Cl_9$ [19], Cs ₇Tl₂Cl₇-type (S.G.R3c); L-CsEr₂Cl₇ and L-RbEr₂Cl₇ [20], (S.G. Pnma).

The high-temperature modifications of the 3 : 1 compounds crystallize with the cubic elpasolite structure (S.G. Fm3m); lattice parameters at 500° C are: H-Cs₃ErCl₆, $a = 11.535(2)$ Å; H-Rb₃ErCl₆, $a = 11.191$ (4) Å.

3.3. *Solution calorimetry*

All solution enthalpies were determined as the mean of three measurements. For ErCl₃, a value of $-211.9(1)$ kJ mol⁻¹ was found (Ref. [21]: -210 to -216 kJ mol⁻¹). The values for the alkali metal chlorides were taken from previous measurements: CsCl, 18.1(2) kJ mol⁻¹; RbCl, 17.6(2) kJ mol⁻¹. With the solution enthalpies, $\Delta_{sol}H_{2.98}^{\circ}$, the enthalpies of formation from $nAC1 + ErCl_3$ were calculated

$$
\Delta_{\rm f} H^{\circ}_{298} = [\Delta_{\rm sol} H^{\circ}_{298}({\rm ErCl}_{3}) + n\Delta_{\rm sol} H^{\circ}_{298}({\rm ACI})] - \Delta_{\rm sol} H^{\circ}_{298}({\rm A}_{n}{\rm ErCl}_{n+3})
$$

	$\Delta_{\rm sol}H_{\rm 2.98}$	$\Delta_{\rm f} H_{\rm 298}^{\circ}$	$\Delta_f H_{2.98}^{\circ}$ [16]
0.5 CsEr, Cl ₇	$-166.0(1)$	-36.8	-41.9
0.5 Cs , Er , Cl_9	$-113.9(6)$	-70.8	
Cs ₃ ErCl ₆	$-63.6(3)$	-94.4	-98.5
0.5 RbEr ₂ Cl ₇	$-171.9(12)$	-31.3	
Rb_3ErCl_6	$-81.7(9)$	-77.4	

Table 1 Solution enthalpies/kJ mol^{-1}

The measured values for all compounds which could be prepared as pure phases are compiled in Table 1 together with some values from the paper of Blachnik and Selle C161.

3.4. *E.m.\$ measurements*

A comprehensive description of the method was given recently [22]. The e.m.f. values were measured for the formation of each compound from AC1 and the adjacent ErCl₃-rich compound in a temperature range from ~ 300 to 500°C. In this range, the dependence of e.m.f. on T was linear. Thus, equations for the regression lines could be transformed by multiplication by $-nF$ to the Gibbs-Helmholtz equation Δ , $G^{\circ} = \Delta$, $H^{\circ} - T\Delta$, S° . By means of thermodynamic cycles, other functions could be calculated, for instance, if the free enthalpies of syn-reaction, $\Delta_{\rm s}G^{\circ}$, from the two neighbouring compounds. For high-temperature modifications the temperatures of formation (decomposition) were calculated by the condition $\Delta_{\alpha} G^{\circ} = 0$.

E.m.f. measurements could not be performed for the most E_rCl_3 -rich compounds, $CsEr, Cl₇$ and RbEr, $Cl₇$. According to our present experiments, the e.m.f. cells break down for e.m.f. values higher than \sim 500 mV.

The Gibbs-Helmholtz equations for the reaction in the cell are listed below, together with the temperature ranges of the measurements. The range of error was smaller than 1 kJ mol⁻¹ for the energy values and 0.8 J K⁻¹ mol⁻¹ for the entropies.

Cs compounds

Reaction

\n
$$
CsCl + M - Cs_{0.5} E rCl_{3.5} = Cs_{1.5} E rCl_{4.5} \quad (T = 580 - 630 \text{ K})
$$
\n
$$
\Delta_{r} G^{\circ}/k \text{J} \text{ mol}^{-1} = -30.0 - 0.0102 \text{ T/K}
$$
\nReaction

\n
$$
0.5 CsCl + Cs_{1.5} E rCl_{4.5} = Cs_{2} E rCl_{5} \quad (T = 580 - 640 \text{ K})
$$
\n
$$
\Delta_{r} G^{\circ}/k \text{J} \text{ mol}^{-1} = -9.5 - 0.0072 \text{ T/K}
$$
\nReaction

\n
$$
CsCl + Cs_{2} E rCl_{5} = L - Cs_{3} E rCl_{6} \quad (T = 580 - 610 \text{ K})
$$
\n
$$
\Delta_{r} G^{\circ}/k \text{J} \text{ mol}^{-1} = -18.2 - 0.0073 \text{ T/K}
$$

Rb compounds

Reaction $1.5RbCl + L-Rb_{0.5}ErCl_{3.5} = Rb_2ErCl_5$ (T = 560-640 K) $\Delta_{\rm r}G^{\circ}/\rm kJ$ mol⁻¹ = -21.0 - 0.0303 T/K

Reaction $RbCl + Rb$, $ErCl_5 = L-Rb$, $ErCl_6$ $(T = 560-640 \text{ K})$

 $\Delta_{\rm r}G^{\circ}/\mathrm{kJ}$ mol⁻¹ = -23.9 - 0.0017 T/K

From both reactions, the Gibbs-Helmholtz relation for the formation of Rb_2ErCl_5 from its two neighbouring compounds ('syn-reaction') can be calculated:

$$
\begin{aligned} \text{Reaction} \quad {}^{2}_{5}Rb_{0.5}\text{ErCl}_{3.5} + {}^{3}_{5}Rb_{3}\text{ErCl}_{6} &= Rb_{2}\text{ErCl}_{5} \\ \Delta_{S}G^{\circ} &= 6.0 - 0.0111 \text{ T/K}; \ \Delta_{S}H^{\circ} = 6.0 \text{ kJ} \text{ mol}^{-1}; \ \Delta_{S}S^{\circ} = 11.1 \text{ J K}^{-1} \text{ mol}^{-1} \end{aligned}
$$

The enthalpy for this reaction is positive (endothermic reaction). At 539 K (266 $^{\circ}$ C), $\Delta_{\rm S}G^{\circ} = 0$. Below this temperature, Rb₂ErCl₅ is no longer stable.

In Fig. 3 the enthalpies from e.m.f. measurements are compared with those from solution calorimetry.

Fig. 3. Enthalpies in kJ mol⁻¹ from e.m.f. measurements and solution calorimetry for reactions $nAC1 +$ $A_xErCl_{3+x} = A_{(n+x)}ErCl_{(3+x+n)}$

 -77.4

4. Discussion

As pointed out in the introduction the main purpose of these investigations was to find out which differences appear on going from the $DyCl_3$ systems [5] to the analogous $E₁$ systems.

(1) In the system $CsCl/ErCl₃$, there is an additional incongruently melting compound, $Cs_3Er_2Cl_9$. In this ennea-chloride, isolated pairs of face-sharing ErCl₆ octahedra exist. Such double octahedra $[Er_2Cl_9]$ ³⁻ are less deformable than isolated octahedra. Therefore, they are only formed if the radius ratio $r_1^3/(r_0^2)$ is near to the ideal value for six ligands, i.e. 0.41. With $r_{\text{Fr}}^{3+} = 0.881 \text{ A}$ [23] and $r_{\text{Cl}} = 1.81 \text{ A}$, the ratio is 0.49. An analogous Rb compound does not exist because the $Rb⁺$ ion is too small to surrounded by the necessary twelve Cl^- ions. With the bigger Br^- ion, there is an ennea-bromide with Sm^{3+} ($r = 0.964$ Å) [24].

(2) In the Rb system a compound Rb_2EICl_5 exists having the Cs_2DyCl_5 structure with corner-connected $\text{[ErCl}_4\text{Cl}_{2/2}\text{]}$ octahedra. The analogous compounds with Dy and Tb do not exist, while Rb_2GdCl_5 crystallizes in the K_2PrCl_5 type with CN7 for Ln^{3+} .

As can be seen from the e.m.f. measurements, the Gibbs function for the syn-reaction 0.2RbEr₂Cl₇ + 0.6Rb₃ErCl₆ = Rb₂ErCl₅ is zero at 266°C. Above this temperature, the endothermic enthalpy $\Delta_{\rm s}H^{\circ} = 6.0 \text{ kJ} \text{ mol}^{-1}$ is compensated by a sufficiently high $(-T\Delta S)$ term so that $\Delta_S G$ becomes < 0. This is the equilibrium temperature of formation for the high-temperature phase Rb,ErCl,. This solid state reaction is strongly kinetically hindered so that in the time scale of DTA (heating rate 2 K min⁻¹) the reaction temperature is found at 348°C. In the cooling period, the decomposition does not occur at all: the cooling product is metastable Rb_2EICl_5 . We have found the same feature for many other systems with such 'reconstructive phase reactions' [25].

The $\Delta_{\rm s}H^{\circ}$ values of all other syn-reactions are negative therefore, these compounds should be stable down to $T = 0$ K if no anomalies in heat capacities occur at low temperature.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Their help is gratefully acknowledged.

References

- [1] H.J. Seifert, J. Sandrock and G. Thiel, Z. Anorg. Allg. Chem., 598/599 (1991) 307.
- [2] G. Meyer and E. Hiittl, Z. Anorg. Allg. Chem., 497 (1983) 191.
- [3] W. Jeitschko and P.C. Donohue, Acta Crystallogr. Sect. B, 31 (1975) 1890.
- [4] S. Mitra, J. Uebach and H.J. Seifert, J. Solid State Chem., 115 (1995) 484.
- [5] H.J. Seifert and R. Krämer, Z. Anorg. Allg. Chem., 620 (1994) 1453.
- *[6] G.* Thiel and H.J. Seifert, Thermochim. Acta, 133 (1988) 275.
- [7] H.J. Seifert and G. Thiel, Thermochim. Acta, 20 (1977) 244.
- [8] G. Thiel and H.J. Seifert, Thermochim. Acta, 22 (1978) 363.
- [9] H.J. Seifert and G. Thiel, J. Chem. Thermodyn., 14 (1982) 1159.
- [10] M. Prien, G. Koske and H.J. Seifert, Z. Anorg. Allg. Chem., 620 (1994) 1943.
- [11] B.G. Korshunov, D.V. Drobot, I.E. Galchenko and Z.N. Shevtsova, Zh. Neorg. Khim., 11 (1965) 4
- 1121 V.F. Goryushkin, S.A. Zalymova and A.I. Poshevneva, Zh. Neorg. Khim., 35 (1990) 3081.
- 1131 AS. Dworkin and M.A. Bredig, High Temp. Sci., 3 (1971) 81.
- 1141 M. Gaune-Escard, L. Rycerz, W. Szczepaniak and A. Bogacz. J. Alloys Comp., 204 (1994) 193.
- [15] L.D. Polyachenok, L.D. Nazarov and O.G. Polyachenok, Russ. J. Phys. Chem., 52 (1978) 1021.
- 1161 B. Blachnik and D. Selle, Z. Anorg. Allg. Chem., 454 (1979) 90.
- [17] H. Mattfeld and G. Meyer. Z. Anorg. Allg. Chem., 618 (1992) 13.
- [18] G. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z. Anorg. Allg. Chem., 521 (1985) 161.
- [19] G. Meyer and A. Schönemund, Mater. Res. Bull., 15 (1980) 89.
- [20] G. Meyer, P. Ax, A. Crcmm and H. Linzmeier, J. Less-Common Metals, 98 (1984) 323.
- [21] J. Burgess and J. Kijowski, Adv. Inorg. Chem. Radiochem, 24 (1981) 57.
- [22] H.J. Seifert, H. Fink and B. Baumgartner, J. Solid State Chem., 107 (1991) 19.
- [23] R.D. Shannon and C.T. Prewitt, Acta Crystallogr. Sect. B, 25 (1969) 925.
- [24] M. Alsmann and H.J. Seifert, J. Therm. Anal., in press.
- [25] H.J. Seifert, J. Therm. Anal., 35 (1989) 1879.